(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
exp(s(x35_1), s(y)) →+ +(exp(s(x35_1), y), *(x35_1, exp(s(x35_1), y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
The rewrite sequence
exp(s(x35_1), s(y)) →+ +(exp(s(x35_1), y), *(x35_1, exp(s(x35_1), y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(y, *'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
exp(x, 0') → s(0')
exp(x, s(y)) → *'(x, exp(x, y))
*'(0', y) → 0'
*'(s(x), y) → +'(y, *'(x, y))
-(0', y) → 0'
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
exp,
*',
-They will be analysed ascendingly in the following order:
*' < exp
(8) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
y,
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
*', exp, -
They will be analysed ascendingly in the following order:
*' < exp
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol *'.
(10) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
y,
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
exp, -
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol exp.
(12) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
y,
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
The following defined symbols remain to be analysed:
-
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s:+'2_0(
n58931_0),
gen_0':s:+'2_0(
n58931_0)) →
gen_0':s:+'2_0(
0), rt ∈ Ω(1 + n58931
0)
Induction Base:
-(gen_0':s:+'2_0(0), gen_0':s:+'2_0(0)) →RΩ(1)
0'
Induction Step:
-(gen_0':s:+'2_0(+(n58931_0, 1)), gen_0':s:+'2_0(+(n58931_0, 1))) →RΩ(1)
-(gen_0':s:+'2_0(n58931_0), gen_0':s:+'2_0(n58931_0)) →IH
gen_0':s:+'2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
y,
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
-(gen_0':s:+'2_0(n58931_0), gen_0':s:+'2_0(n58931_0)) → gen_0':s:+'2_0(0), rt ∈ Ω(1 + n589310)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s:+'2_0(n58931_0), gen_0':s:+'2_0(n58931_0)) → gen_0':s:+'2_0(0), rt ∈ Ω(1 + n589310)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
exp(
x,
0') →
s(
0')
exp(
x,
s(
y)) →
*'(
x,
exp(
x,
y))
*'(
0',
y) →
0'*'(
s(
x),
y) →
+'(
y,
*'(
x,
y))
-(
0',
y) →
0'-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
Types:
exp :: 0':s:+' → 0':s:+' → 0':s:+'
0' :: 0':s:+'
s :: 0':s:+' → 0':s:+'
*' :: 0':s:+' → 0':s:+' → 0':s:+'
+' :: 0':s:+' → 0':s:+' → 0':s:+'
- :: 0':s:+' → 0':s:+' → 0':s:+'
hole_0':s:+'1_0 :: 0':s:+'
gen_0':s:+'2_0 :: Nat → 0':s:+'
Lemmas:
-(gen_0':s:+'2_0(n58931_0), gen_0':s:+'2_0(n58931_0)) → gen_0':s:+'2_0(0), rt ∈ Ω(1 + n589310)
Generator Equations:
gen_0':s:+'2_0(0) ⇔ 0'
gen_0':s:+'2_0(+(x, 1)) ⇔ s(gen_0':s:+'2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s:+'2_0(n58931_0), gen_0':s:+'2_0(n58931_0)) → gen_0':s:+'2_0(0), rt ∈ Ω(1 + n589310)
(20) BOUNDS(n^1, INF)